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Inferring regulation networks

§ Yesterday: WGCNA, simple correlation: 

§ Beyond correlation: reverse engineering of regulation,
find connections and parameters from measurement data



Systems biology

§ Model biological processes 
to better understand life

§ Interplay between 
biologists and 
computer scientists

§ Use networks to
● create hypotheses
● guide experiments
● store knowledge

Hiroaki Kitano,
2001



Inferring regulation networks (2)

§ Physical approach:
identify protein 
factors regulating
transcription
(model-based)

§ Influence approach:
summarize 
regulatory influences
between transcripts



Measurement data

§ Steady state
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Steady-state data
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1. Introduction

One decade ago, DNA microarray technologies [1–3] were developed which enabled an experimenter
to simultaneously measure the concentration of thousands of RNA transcripts from a single sample of
cells or tissues. Such data offered the possibility to infer, or “reverse-engineer,” a model of a cell’s
underlying transcription control systems (Fig. 1). Engineers and scientists have previously developed
reverse-engineering techniques in the fields of computer science, engineering, and statistics, which are
respectively called machine learning, system identification, and statistical learning. Hence, not long after
DNAmicroarray technology emerged, researchers proposed plausible approaches to reverse-engineer the
mechanism of transcription control in cells [4–10].
Continuing research [11–15] has dramatically expanded the types of reverse-engineering approaches

and their application to experimental data. Still, the development of reverse-engineering methods remains
a challenging and active area of research. Challenges principally arise from the nature of the data; they
are typically noisy, high dimensional, and significantly undersampled. Moreover, well-understood and
standardized benchmark systems for validating algorithm performance are not available. Thus, significant
questions still remain regarding experimental design, the reliability of the predicted networks, and the
utility of various approaches for particular applications.

Fig. 1. The general strategy for reverse-engineering transcription control systems. (1) The experimenter perturbs cells with
various treatments to elicit distinct responses. (2) After each perturbation, the experimenter measures the expression (concen-
tration) of many or all RNA transcripts in the cells. (3) A learning algorithm calculates the parameters of a model that describes
the transcription control system underlying the observed responses. The resulting model may then be used in the analysis and
prediction of the control system function.



Time series data



Clustering: groups of genes

Cluster 1
Cluster 2
Cluster 3
Cluster 4



Network inference: derive relationships

Cluster 1
Cluster 2
Cluster 3
Cluster 4



General approach

§ Assume (change of) gene expression at time t 
depends on activity of regulators at time t-1 

§ For regulator activity, take gene expression as proxy
§ Number of samples and sampling interval critical for fitting

X t+1( ) = f X (t )( )



From time series data to networks

g1

g2

Sample at time tk: 
activity of g1 & g2
(each point is one sample)
Trajectory of expression
during the experiment
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State-space model

§ State of cell given 
by expression 
levels of all genes

§ Closed, one-step
memory system

§ Simplest model: linear,
activity of a gene = weighted sum of all genes,

!(#$%) = (!(#$%) + *
find ( and * by linear regression

g1
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t-2 t-1 t

t+k
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State-space model (2)

§ Example: 3 gene network
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Many other methods

§ Association networks:
● correlation
● mutual information 

§ Boolean networks
● REVEAL

§ Bayesian networks
§ Dynamical systems (ODEs)

● Inferelator
§ Etc. etc. - see e.g. 

Hurley, NAR 2012 or 
Huynh-Thu and Sanguinetti, arXiv 2018
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ANALYSIS

methods explicitly used this informa-
tion. Consequently, these methods recov-
ered target genes of deleted transcription  
factors more reliably than the inference 
methods that did not leverage this infor-
mation (Fig. 2c). Explicit use of such 
knockouts also helped methods to draw 
the direction of edges between tran-
scription factors more reliably. These 
observations suggest that measurements 
of transcription-factor knockouts can 
be informative for network reconstruc-
tion. In particular, this is the case for the  
E. coli data set, which contained the larg-
est number of such experiments (Online 
Methods). To further explore the informa-
tion content of different experiments, we employed a machine 
learning framework22 to systematically analyze the information 
gain from microarrays grouped according to the type of experi-
mental perturbation (knockouts, drug perturbations, environ-
mental perturbations and time series; Supplementary Note 5). 
We found that experimental conditions independent of transcrip-
tion factor knockout and overexpression also provide informa-
tion, though at a reduced level.

Community networks outperform individual inference methods
Network inference methods have complementary advantages and 
limitations under different contexts, which suggests that combining  
the results of multiple inference methods could be a good strategy 
for improving predictions. We therefore integrated the predic-
tions of all participating teams to construct community networks 
by rescoring interactions according to their average rank across 
all methods (Supplementary Note 6). The integrated community 
network ranks first for in silico, third for E. coli and sixth for  
S. cerevisiae out of the 35 applied inference methods, which shows 
that the community network is consistently as good or better than 
the top individual methods (Fig. 2a). Thus it has by far the best 
performance reflected in the overall score. We stress that, even 
though top-performing methods for a given network are com-
petitive with the integrated community method, the performance  
of individual methods does not generalize across networks.  

Given the biological variation among organisms and the experi-
mental variation among gene-expression data sets, it is difficult 
to determine beforehand which methods will perform optimally 
for reconstructing an unknown regulatory network. In con-
trast, the community approach performs robustly across diverse  
data sets.

We next analyzed how the number of integrated methods 
affects the performance of community predictions by examin-
ing randomly sampled combinations of individual methods. 
On average, community methods perform better than indi-
vidual inference methods even when integrating small sets of 
individual predictions: for example, just five teams (Fig. 3a).  
Performance increases further with the number of integrated 
methods. For instance, given 20 inference methods, their inte-
gration ranks first or second in 98% of the cases (Fig. 3b). We 
also found that the performance of the community network can 
be improved by increasing the diversity of the underlying infer-
ence methods. Consensus predictions from teams using similar 
methodologies were outperformed by consensus predictions from 
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robust-
ness to the inclusion of a limited subset (up to ~20%) of poorly per-
forming inference methods (Fig. 3d). Poor predictors essentially 
contributed noise, but this did not affect the performance of the 
community approach as a whole. This finding is crucial because 
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Figure 2 | Evaluation of network inference 
methods. Inference methods are indexed 
according to Table 1. (a) The plots depict the 
performance for the individual networks (area 
under precision-recall curve, AUPR) and the 
overall score summarizing the performance across 
networks (Online Methods). R, random predictions; 
C, integrated community predictions. (b) Methods 
are grouped according to the similarity of their 
predictions via principal-component analysis. 
The second versus third principal components 
are shown; the first principal component 
accounts mainly for the overall performance 
(Supplementary Note 4). (c) The heat map 
depicts method-specific biases in predicting 
network motifs. Rows represent individual 
methods and columns represent different types of 
regulatory motifs. Red and blue show interactions 
that are easier and harder to detect, respectively.

Marbach et al., 
Nature Methods 2012



Network mining

§ Like in WGCNA:
find subnetworks 
(clusters, modules) 
that may correspond 
to specific functions, 
processes, complexes…

§ General idea: 
clusters/modules have
many (high-weight)
connections within, 
and few (low-weight)
connections without
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Interpretation

§ Given a list of 
significant genes, 
a cluster or 
module, what 
information is 
available to learn 
more about it?

§ A lot of functional 
information is 
known about 
genes and 
gene products
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Measurement databases

§ Genomics: Ensembl, UCSC, RefSeq, Uniprot, GenBank
§ Transcriptomics: Gene Expression Omnibus (GEO), 

EBI ArrayExpress, Stanford Microarray Database (SMD)
§ Proteomics: Open Proteomics Database (OPD), Integr8
§ Protein-DNA: Biomolecular Network Database (BIND), 

Encyclopedia of DNA elements (ENCODE)
§ Protein-protein: Munich Inf. Center for Prot. Seq. (MIPS), 

Database of Interacting Proteins (DIP)
§ Interactome: General Repository for Interaction Datasets 

(GRID)
§ ...

20



Databases

§ HuGO: gene names
§ Gene Ontology (GO): gene annotations
§ TRANSFAC: transcription factors
§ TRANSPATH: signalling pathways
§ KEGG LIGAND, Brenda: chemical reactions, enzymes
§ REACTOME, BIOCARTA, KEGG: biological pathways
§ Saccharomyces Genome Database (SGD)
§ PUBMED/MEDLINE: biological references, abstracts
§ ...

21



Sequence features

§ Chromosome: genes may be functionally related if…
● they lie close on the genome
● example: operons

§ Sequence: genes may be functionally related if…
● they share a transcription 

factor binding site
● they are homologous 

to a single other gene
● example: Rosetta

22



Protein features

§ Protein domains: genes may 
be functionally related if…
● they share certain 

structural domains

§ Protein families: genes may 
be functionally related if…
● their products belong to the 

same protein (super)family
(evolutionary related, but
no longer homologous)

23



Protein interactions

§ Protein interactions: genes may 
be functionally related if…
● their products interact in

some way, e.g. form a complex

24



Pathways

§ Specific interactions:
● Signalling pathways

● Metabolic pathways

25



Phenotypes

§ Disease 
annotation

§ Tissue 
expression

26



Gene ontology

§ Three ontologies:
● Biological processes (BP)
● Molecular functions (MF)
● Cellular components (CC)

27

id: GO:0007323
name: peptide pheromone maturation
namespace: biological_process
alt_id: GO:0007324
alt_id: GO:0007326
alt_id: GO:0046613
def: "The generation of a mature, active peptide pheromone via processes 

unique to its processing and modification. An example of this process 
is found in Saccharomyces cerevisiae." [GOC:elh]

synonym: "a-factor processing (proteolytic)" NARROW []
synonym: "alpha-factor maturation" NARROW []
synonym: "pheromone processing" EXACT []
is_a: GO:0016485 ! protein processing

AXL1
KEX2
KEX2
krp1
mug138
RAM2
RCE1
SPAC1687.02
SPAC3H1.05 
STE13 
STE14 
STE23 
STE24 



Gene ontology (2)
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Annotation (2)

§ How do we use 
this information
to help interpret 
a list of significant 
genes or a cluster?

§ Annotation: look up genes in databases
§ Enrichment: look for significant annotations in gene list
§ Prioritization: order genes on relation to phenotype

29
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Enrichment: Fisher’s exact test

§ Statistical test for association due to R.A. Fisher
§ Also known as the hypergeometric test

30



Test setup

§ n = 8 cups of tea
§ a = 3 with milk first, b = 5 with tea first

31



Fisher’s exact test

• Remember from statistics: hypothesis tests
• null hypothesis: assume there is no real association

between pouring order and the ladies choice
• what is the probability of finding an association

in an experiment by chance?
• if this is probability is low, the assumption is likely 

incorrect : she can really tell the difference

32



Fisher’s exact test (2)

• Test setup:
• Present cups in random order
• Ask the lady to pick the three “milk first” cups
• Null hypothesis:

• The lady picks 2 cups correctly
• What is the probability of this happening under H0?

33

H0 : choice is random

#ways of picking 2 "milk first" and 1 "tea first" cups
total #ways of picking 3 cups



Fisher’s exact test (3)

• What is the total number ways in which she could 
choose 3 cups in a specific order?

34
8 7 6× ×

A B C D

D E F G



Fisher’s exact test (4)

• How many ways are there of ordering 3 cups?

35
3 2 1× ×

G A E
G E A
A E G
A G E
E A G
E G A

G A E



Fisher’s exact test (5)

• What is the total number ways in which she could 
choose 3 cups in a specific order?

• How many ways are there of ordering 3 cups?

• What is the total number ways in which she could 
choose 3 cups in any order?

36

8 7 6× ×

8 7 6
3 2 1
× ×
× ×

3 2 1× ×

8 8(8 7 6) (5 4 3 2 1) 8!
5 3(3 2 1) (5 4 3 2 1) 3! 5!
æ ö æ ö× × × × × × ×
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Fisher’s exact test (6)

• The lady picks 2 cups correctly
• What is the probability of this happening under H0?

37

#ways of picking 2 "milk first" and 1 "tea first" cups
total #ways of picking 3 cups



Fisher’s exact test (7)

• What is the total number ways in which she could 
choose 2 “milk first” cups out of 3 in any order?

• What is the total number ways in which she could 
choose 1 “tea first” cup out of 5?

38
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Fisher’s exact test (8)

• The lady picks 2 cups correctly
• What is the probability of this happening under H0?

39

#ways of picking 2 "milk first" and 1 "tea first" cups
total #ways of picking 3 cups

3 5
2 1

8
3
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Fisher’s exact test (9)

• The lady picks 2 cups correctly
• What is the probability of this happening under H0?

40
0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

#cups correct

pr
ob

ab
ili

ty



Fisher’s exact test (10)

• p-value: what is the probability of picking 
at least 2 cups correctly under H0?
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Do we reject the 
null hypothesis?



Fisher’s exact test (11)

• More generally:
• n balls
• a green ones 
• b red ones

• draw k balls
• what is the 

probability
of finding 
at least m
green balls
by chance?

42

Drawn Not drawn Total

Green m a-m a

Red k-m b-(k-m) b

Total k a+b-k n
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Fisher’s exact test (12)

• More generally:
• n genes
• a “pheromone production”
• b not

• find a cluster of k genes
• what is the 

probability
of finding 
at least m
“pheromone 
genes” 
by chance?

43

In cluster Not in cluster Total

Pheromone pr. m a-m a

Non-pherom. pr. k-m b-(k-m) b

Total k a+b-k n



Fisher’s exact test (13)

• Or: 

44

Genome:
n = 6383

Cluster:
k = 2137

Pheromone
production

m
= 
25

a-m
= 
36

In cluster Not in cluster Total

Pheromone pr. m a-m a

Non-pherom. pr. k-m b-(k-m) b

Total k a+b-k n



Fisher’s exact test (14)

• If you test multiple annotations, 
adjust for multiple testing, e.g. using FDR or Bonferoni:
multiply each p-value by the number of statistical tests

• For example, testing 30,000 GO annotations:
significant at p < 0.05/30,000 = 1.67 x 10-6
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Gene set enrichment analysis

• Standard high-throughput experiment:
• Perform an experiment with two conditions,

check for significant differential expression, e.g.:
perform a t-test for each gene, calculate p-value

• Adjust for multiple testing (Bonferoni)
• Select only genes with padj < 0.05 or padj < 0.01

• Alternatively:
• Cluster genes using time series or set of conditions

• Problem:
• Result is often a very small set of genes
• Consequently, Fisher’s exact test 

will never give significant enrichments
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Gene set enrichment analysis (2)

• Alternative: check whether ranking of genes
based on t-test is associated with a certain annotation
(no p-value threshold!)

48

Genes with 
annotation

cumulative
score, for 
growing 
subset

genes 
involved in 
pheromone 
production

all genes,
ordered by
t-statistic



Online tools

§ For human and other model organisms:
● DAVID, https://david.ncifcrf.gov/
● GOrilla, http://cbl-gorilla.cs.technion.ac.il/
● GSEA, http://software.broadinstitute.org/gsea/

§ For plants:
● AgriGO, http://bioinfo.cau.edu.cn/agriGO/
● PlantGSEA,

http://structuralbiology.cau.edu.cn/PlantGSEA/
● gProfiler, http://biit.cs.ut.ee/gprofiler/

https://david.ncifcrf.gov/
http://cbl-gorilla.cs.technion.ac.il/
http://software.broadinstitute.org/gsea/
http://bioinfo.cau.edu.cn/agriGO/
http://structuralbiology.cau.edu.cn/PlantGSEA/
http://biit.cs.ut.ee/gprofiler/


Network-based analysis

§ Interpret genes and gene lists by looking at 
their neighbourhood in a network of interacting genes

§ “Guilt-by-association”: 
if a gene A is linked to 
another gene B with a 
known function, it may 
also have that function

ED

f ?



Network-based analysis (2)

§ Interaction type is important!
● physical (protein-protein)
● regulatory (protein-DNA)
● TF2Network
● functional (gene-gene, 

often predicted)
● GeneMania

(model organisms)
● STRING
● AraNet

§ Functional interactions
most informative



STRING

§ Search 
Tool for the 
Retrieval of
Interacting 
Genes

§ Predicts
functional
interactions
based on
co-expression,
co-evolution,
homology,
literature etc.

§ http://string-db.org/ von Mering et al., NAR 2003



GeneMania

§ Same principle, other data sources

§

http://genemania.org/



Take-home

§ Regulatory networks can
be inferred from gene expression
data and mined for modules

§ Annotation enrichment tests:
● Fisher’s exact test:

the basic tool
● GSEA: needs no

subset selection
§ Network-based tools can be

used to explore interactions
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